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Question 1. (20 Marks) Consider the following IVP:  

( , )x f t x′ = , (0) 0x = , 

where  
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1. To show 
0
0

lim ( , ) 0 (0,0)
t
x

f t x f
→
→

= = ;  

2. To show that ( , )f t x  is continuous on 2R ; 

3. To show that ( , )f t x  doesn’t satisfy a Lipschitz condition in any neighborhood of  

the origin by showing 
0
0

lim ( , )
t
x

f t x
x→

→

∂
= ∞

∂
 (why? Give the detail).  

4. To construct by Picard iteration with 0 ( ) 0x t ≡  to get the Picard sequence given by 

2
2 1( )mx t t− = , 2

2 ( )mx t t= − , m N +∈ , 

Is this Picard sequence { ( )}nx t  convergent uniformly on [ , ]t h h∈ −  or not? Give your 

reasoning.  

5. Although its two subsequences do converge uniformly on [ , ]t h h∈ − , are they convergent 

uniformly to the solution? Give your reasoning.  
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6. However, the uniqueness of solution is still there. Give your judgment on what implication can 
be concluded by this phenomenon.  
(The proof of uniqueness is given as follows. 

If there exist two solutions 1( )x t  and 2 ( )x t , defined on [0, ]t h∈ , where 0 h< < ∞ , then 

2
1 2( ) ( ( ) ( ))t x t x tδ = −  satisfies  

  (0) 0δ = , ( ) 0tδ ≥ , [0, ]t h∈ . 

Then 

    1 2 1 2 1 2 1 2( ) 2 [ ( ) ( )][ ( ) ( )] 2 [ ( , ( )) ( , ( ))][ ( ) ( )]t x t x t x t x t f t x t f t x t x t x tδ ′ ′ ′= − − = − − . 

Since ( , )f t x  is not increased on x  by the definition of ( , )f t x , we have 

1 2 1 2[ ( , ( )) ( , ( ))][ ( ) ( )] 0f t x t f t x t x t x t− − ≤ , [0, ]t h∈ . 

It yields ( ) 0tδ ′ ≤ , which implies ( ) 0tδ ≤ , [0, ]t h∈ . Then it must have ( ) 0tδ ≡  for 

[0, ]t h∈ . That is, 1( )x t 2 ( )x t≡  for [0, ]t h∈ . It is similar to show for [ , 0]t h∈ − . The 

uniqueness is done. ) 
7.  Can you find this unique solution of the IVP? Try it.  
 
 

Question 2. (20 Marks) Show that the continuous map 3 3:H R R→  defined by  
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2 1
2
1
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( )

3

x
H x x x

x
x

 
 
 
 = +
 
 + 
 

 

has a continuous inverse 1 3 3:H R R− →  and that the nonlinear system ( )x f x′ =  with  

1
2

2 1
2

3 1

( )
x

f x x x
x x

 −
 

= − + 
 + 

 

is transformed into the linear system x Ax′ =  with (0)A D f=  under the map; i.e.  

if ( )y H x= , show that y Ay′ = . 
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Question 3. (20 Marks) 

1. Find the first three successive approximations (1) ( ; )u t a , (2) ( ; )u t a  and (3) ( ; )u t a  for  

1 1
2

2 2 1

x x
x x x
′ = −

 ′ = +
 

and use (3) ( ; )u t a  to approximate the stable manifold S  near the origin. Also approximate the 

unstable manifold near the origin for this system. Note that (3) (2)( ; ) ( ; )u t a u t a=  and therefore 

( 1) ( )( ; ) ( ; )j ju t a u t a+ =  for 2j ≥ . Thus  

( ) (2)( ; ) ( ; ) ( ; )ju t a u t a u t a→ = , 

which gives the exact function defining S .  
2. Solve the above system and show that S  and U  are given by  

                          
2
1

2:
3
x

S x = − ; 1: 0U x = . 

Sketch S , U , SE  and UE .  

 
 
Question 4. (20 Marks)  
1. State LaSalle-Krosovskii’s Theorem.  
2. Apply LaSalle-Krosovskii’s Theorem to the following general pendulum equation 

1 2

2 1 2( ) ( )
x x
x g x h x
=

 = − −





, 

where )(⋅g  and )(⋅h  are locally Lip. and satisfy 

0)0( =g , ( ) 0yg y > , 0y∀ ≠ , ( , )y∈ −∞ ∞ ; 

0)0( =h , ( ) 0yh y > , 0y∀ ≠ , ( , )y∈ −∞ ∞ , 

to conclude its stability of the origin.   
 
 
Questions 5. (20 Marks) The system of the form given by  

( )x V x′ = −∇  

is called a gradient system, where :V D R→  is of 2C , nD R⊂ .  

Let 2:V R R→  be a function with  
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2
22

1 2 1 1( , ) 2 ( 1)
2
x

V x x x x= − + . 

1. Show that   

1 1 1 1

2 2

2 ( 1)(2 1)x x x x
x x
′ = − − −

 ′ = −
 

   is a gradient system. 
2. Find all possible equilibriums of the above gradient system. Determining the stability of each 

equilibrium.  
 

 


